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Some Properties of Orthogonal Polynomials 

By D. B. Hunter 

Abstract. Some results are obtained concerning the signs of the coefficients in the expan- 
-1 -1 -x) o xan sions in powers of x , (1 + x) or (1i- of 1/pn(x) and qn(x), where pn(x) is the 

polynomial of degree n in the orthogonal sequence associated with a given weight-function 

w(x) over (- 1, 1) and qn(x) = -1t) dt. 

1. Origin of the Problem. The problem to be considered here has its origin in 
some results obtained by Stenger [5]. Let a weight-function w(x) be positive and 
continuous in the interval - 1 < x < 1, and such that f 1 1 w(x) dx exists. Then it 
is well known that there is a sequence of polynomials 1pO(X), p1 (x), . }, pPn(x) 
being of exact degree n, satisfying the orthogonality-relation 

(1) 1_ W(X)Pm(X)Pn(X)dX = O (m 0 n) 

(see, e.g., Szego [7] ). Each polynomial in the sequence is unique apart from a 
constant factor. We shall impose no particular normalisation on the polynomials, but 
shall merely stipulate that the coefficient of xn in pn(X) is positive. 

A second sequence of functions {qo(x), q1(x), } can be defined in terms of 
the above orthogonal sequence by the equation 

(2) q ((I) = w(t)Pn(t)dt 

qn(x) is then analytic and single-valued in the complex plane cut along the interval 

[- 1, 1]. 

The two functions pn(x) and qn(x) have been widely used in recent years in 

analysing the error in the Gaussian quadrature formulae for integrals of the form 

f I w(x)f(x)dx; among many references, we may mention Barrett [1], Donaldson 
and Elliott [2], Stenger [5]. Stenger's analysis is concerned largely with the signs 
of the coefficients bn and cnj in the following two series, which both converge 
absolutely and uniformly for [x I > R > 1: 

00 

(3) l/pn(x) = , bn 1x-ni (n > 1), 
j=0 
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and 

(4) qn(x) = Cn X -n (n > 0). 
j=0 

In particular, he shows that if w(x) is an even function of x, then 
(a) bn 2 > 0 and bn 2+ =?0, except in the case n = 1, whenb 1 > 0 and 

b = 0 forj>0; 

(b) cn 21 > 0 and cn,2 +1 =0. 
These results are, in fact, quite easily proved. The problem of determining the signs 
of the coefficients bn and cn,j when w(x) is not an even function appears to be 
considerably more difficult. In Section 2, we prove two theorems which go part of 
the way towards solving the problem. 

The functions l/pn(x) and qn(x) can also be expanded in negative powers of 
(1 + x) or (1 - x). The corresponding problem for those expansions can be complete- 
ly solved, and the results are given in Section 3. Section 4 deals briefly with the 
important special case w(x) = (1 - x)'(1 + x)O, (ac, ,B > - 1), associated with the 
Jacobi polynomials P(Q'P)(x). Finally, in Section 5, a number of further results are 
conjectured. 

2. Expansions in Negative Powers of x. 
THEOREM 1. If w(x)/w(- x) is strictly increasing for - 1 < x < 1, then bn > 0, 

n = 1, 2, j X=0, 1, 2, *j 
Proof Let the zeros of pn(x) be x1, x2, , x,. It is well known (see, e.g., 

Szego [7, Theorem 3.3.1]) that they are real and distinct and lie in the open interval 
(- 1, 1). We shall arrange them in descending order, so that xi > x2 > ... > xn. 
Now if kn denotes the. coefficient of xn in pn(X), so that kn > 0, we have 

n 00 

(5) l/pn(x) = x (1 xk/x)- = kn1 E hx -n1, 
k=1 j=0 

where h1 h1(xl, x2, , xn) denotes the homogeneous product sum of degree 

j of x1, x2, * * *, xn (see, e.g., Littlewood [4, eq. 5.2] ). Thus bn,j = hl/kn, and it 
remains to show that h, > 0. 

Now let 

(6) w(X,T)=7W(x)+(1-T)w(-x) (0<T_ 1) 

so that, in particular, w(x, 1) = w(x) and w(x, 0) = w(- x). Further, let the zeros of 
the polynomial of degree n in the orthogonal sequence associated with weight-function 
w(x, r) be xl (T) > x2(T) > > Xn(T). 

We have 

W,(X, T) w(x) - w(- x) - 

w(x, T) Tw(x) + (1-)W(- x) w(x)/w(- x)-1 + T 
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and this, under the conditions of the theorem, is a strictly increasing function of x. 
Hence, by a theorem of Markoff, (see Szeg6 [7, Theorem 6.12.1]), the kth zero 
xk(T) is an increasing function of r. Now clearly, w(x, '2) is an even function of x; 
consequently, Xk(/2) + Xn-k + 1 (y2) = O. 

Hence 

Xk + Xn-k+ 1 = Xk(l) + Xn-k+ l (1) > 0. 

It follows that for r > 0, x + X_k+1 > . 

Thus, if 

n 

(7) Sr X k 
k=1 

then Sr > 0. But the functions hi are expressible in terms of the Sr: 

(8) 1h =(sj 2 (S~i 
(8) }~~ (ae) ai! a2! 

... 
a>! ( ) (2 ) l 

(see, e.g., Littlewood [4, p. 267]), the summation being over all partitions (ac) = 

(1 1 2c2 ... jca) of j. So, clearly, h1 > 0, proving the theorem. 
COROLLARY. If w(x)/w(- x) is strictly decreasing for - 1 < x < 1, then 

(- )Ibn,j > O, n = 1, 2, , j= O, 1, 2, *j 

THEOREM 2. Cn, 2 > 0, n = 0, 1, 2,, j = 0, 1, 2,*. 
Proof. By expanding (x - t)-1 as a power-series in tlx, inserting in (2), and 

integrating term-by-term, we deduce that 

(9) cn,1i= f w(t)pn(t)tn+j dt. 

Now, according to Hildebrand [3, Section 7.4], there is a function Un(x) with the 
following properties: 

w(x)pn(x) = Un(x) (-1 <x < 1), 

Un(- 1) = Un(- 1) = = 

Un(1) = U,(1) = * = Un' 1)(1) = 0. 

Integrating (9) by parts n times and using (10), we thus obtain the result 
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We now show that (- I)n Un(x) > 0 if- 1 <x < 1. For Unn)(x) (-w(x)pn(x)) 
has n real zeros in (- 1, 1), i.e., Unjn-1)(x) has n stationary points in the interval. It 
follows that Unn-1 )(x) has at most n + 1 zeros in the closed interval [- 1, 1]. Since 
two of these are accounted for by the zeros at x = ? 1, Un-1 )(x) has at most n - 1 
zeros in (- 1, 1). Similarly, U4(-n-2)(x) has at most n - 2 zeros in (- 1, 1), and so 
on, until, eventually, we see that Un(x) is of constant sign in (- 1, 1). To establish 
the sign, we note that 

f (- I)nUn(x)dx = cn,o/n! =! f1 w(x)pn(x)x dx 

n f' w(x){p (x)}2dx > 0, 

so that (- I)nUn(x) > 0. Thus, if j is even, the integrand in (11) is positive, and 
this completes our proof. 

3. Expansions in Negative Powers of (1 + x) or (1 - x). The functions l/pn(x) 
and qn(x) can also be expanded in negative powers of (1 + x) or (1 - x), as follows: 

00 

l/pn(x) = X n,B (1 + x)-n-' (n > 1) 
(12) j=o 

00 

= E ,, j3(I -x)-n 
- 

(n > 1), 
0 

qn(x) = ; Tn,j( + x)-n (n > O) 

(13) j0 

00 

=E. 'nl X(-x)-n (n > 0). 

The two expansions in powers of (1 + x)-1 are absolutely and uniformly convergent 
if II + xl > R > 2, those in powers of (1 - x)-' if 11 - xl > R > 2. 

The problem of determining the signs of the coefficients n,Bnj, Onnj, Y and n can 
be solved completely. The results are stated below, without proof, since the proofs 
are similar to those of Theorems 1 and 2 (and, in fact, rather simpler). 

THEOREM 3. 

On,j > ? 
(14) n= 1,2, , j=0, 1,2, . 

THEO)nR, >O 

THEOREM 4. 
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Tn,j > ? 
(15) n =O, 1, 2, , = , 1, 2, . 

I_l)n +I l ,,,j > 0 

4. Application to the Jacobi Polynomials. Let 

(16) w(x) = (1 - xY(1 + x) (o, > - 1). 

Then, apart possibly from a scale-factor, 

(17) Pn(X) =Pn '0(x), 

the Jacobi polynomial of degree n associated with w(x). Also, qn(x) is closely related 

to the Jacobi function of the second kind, Q("')(x); in fact, from Szeg6 [7, 

Eq. (4.61.4)], 

(18) qn(x) = 2(x - 1)(x + ?)Qn p)(x). 

If az = , w(x) is an even function, so that Stenger's results quoted in Section 1 apply. 

As for the other cases, if az < 1, then w(x)/w(- x) is increasing, so that, by Theorem 1, 

bn > 0, while if az > 13, w(x)/w(- x) is decreasing, and the coefficients bn alternate 

in sign. 

In fact, in this case, we can also determine the signs of the coefficients cn 2j+ 1 

since there is an explicit expression for the function Un(x) of Eq. (10), namely, 

(I19) Un) =(- I)n /2nn!) (I - X)n + oz(I + X)n +g; 

this corresponds to Rodrigues' formula, see Szeg6 [7, Eq. (4.3.1)]. So, from (11), 

= (n + 2j + 1)! f x2i1 (1 -x)n +(1 +x)n +dx, 

2nn!(2j ? 1)! -1 

which is positive or negative according as az <13 or az >,1. 

Thus the signs of bnj and Cnj are completely determined in this case. The ex- 

pansion of Q("')(x) in powers of (1 - x)-1 is given in Szeg6 [7, (4.61.5)]. 

5. Some Conjectures. The results proved in the last two sections suggest two 

further problems: 

(a) Can we say anything about the sign of bn 2j for a general weight-function 

w(x)? 

(b) Under what circumstances can we guarantee that cn 2j+ 1 > 0? 

As to the first problem, it may be conjectured that bn,2j > 0. This would follow 

immediately if the following purely algebraic conjecture could be proved: 
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CONJECTURE. h2j(x1, x2, , xn) is positive definite for real x1, x2, xn. 

Some related problems are dealt with in Szeg6 [6]. I have been able to prove 
the result only in the following special cases: 

(i) i = 1 (all values of n). 
(ii) n < 3 (all values of j). 

(iii) j = 2, n < 10. 
The proofs in these cases are outlined below. 

(i) When j = 1, Eq. (8) becomes h2 = ?2(S2 + S2), which is clearly positive 
definite. 

(ii) The result is obvious when n = 1. When n = 2, we have 

h2j(XP, X2) = X2+1 - 22+)/x - X2), 

and this is positive, since the numerator and denominator have the same sign. 
The case n = 3 is more difficult. If the three variables have the same sign, h2j 

is clearly positive. So we may assume that, say, x1 > X2 > 0 > X3. Further, if 

Xi + X3 > 0, it follows from the final part of the proof of Theorem 1 that h2j is 
positive. So there remains the case X3 1 > 1X1 1 

From Littlewood [4, Chapter VI, Theorem V], 

x 2i+2 x x 
2 

x1 x+2 1 21 1 

h2j(XP, X2, X3) Xj2 x2 lX2 X2 

23j X3 1 / X3 1 

(X1 - X3) (X12X+2 - X2'j+2) + (X1 - X2 (X 2 - X2j+2) 

(X1 - X2) (X1 - X3) (X2 - X3) 

> 0. 

(iii) The detailed argument in the case j = 2 is rather involved, and only a 
brief summary is given. When j = 2, Eq. (8) becomes 

h = 
I 

(6S4 + 8S3S1 + 3S2 + 6S2S2 + S4). 

The only term which can be negative is that involving S3S1. We shall now impose 
the constraint 

(20) S2 = 1. 

The minimum value of S4(xP, x2, , xn) subject to this constraint is l/n. Hence 
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h4 > (6/n + 8S3S1 + 3). 4 243 

So, if we can show that the minimum value of 6/n + 8S3S1 + 3 subject to (20) is 
positive, this proves the result. The problem can be tackled by using Lagrange 
multipliers. 

Unfortunately, a separate argument is required for each value of n. It turns out 
that the required minimum is positive for n < 10; for example, when n = 4, there 
is a minimum value 6/4 + 8S3S1 + 3 = 3.677 ... when 

1 77r 77r 
X X2 X3 A sin X4 = COS 9 

and for 7 other sets of values of the variables, obtained by reversing the sign of all 
of them and/or permuting them. All the other stationary values when n = 4 corre- 
spond to positive values of S3S1. 

The argument fails when n = 11; then there is a stationary point for which 

6/11 + 8S3MA + 3 is negative. 
In principle, it would be possible, of course, to minimise h4 itself rather than 

6/n + 8S3M + 3, but the algebra then becomes very involved. 
As to problem (b), the example of the Jacobi weight-function w(x) = 

(1 - x) (I + x)O suggests that cn 2j+ 1 > 0 if w(x)/w(- x) is strictly increasing, but 
again no proof has been found. 
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